Contoh dalam memformulasikan permasalahan, berikut ini akan dibahas perusahaan Krisna Furniture yang akan membuat meja dan kursi. Keuntungan yang diperoleh dari satu unit meja adalah $7,- sedang keuntungan yang diperoleh dari satu unit kursi adalah $5,-.
Namun untuk meraih keuntungan tersebut Krisna Furniture menghadapi kendala keterbatasan jam kerja. Untuk pembuatan 1 unit meja dia memerlukan 4 jam kerja. Untuk pembuatan 1 unit kursi dia membutuhkan 3 jam kerja. Untuk pengecatan 1 unit meja dibutuhkan 2 jam kerja, dan untuk pengecatan 1 unit kursi dibutuhkan 1 jam kerja. Jumlah jam kerja yang tersedia untuk pembuatan meja dan kursi adalah 240 jam per minggu sedang jumlah jam kerja untuk pengecatan adalah 100 jam per minggu. Berapa jumlah meja dan kursi yang sebaiknya diproduksi agar keuntungan perusahaan maksimum?
Dari kasus di atas dapat diketahui bahwa tujuan perusahaan adalah memaksimumkan profit. Sedangkan kendala perusahaan tersebut adalah terbatasnya waktu yang tersedia untuk pembuatan dan pengecatan. Apabila permasalahan tersebut diringkas dalam satu tabel akan tampak sebagai berikut:
TABEL 1.1 Informasi Permasalahan Krisna Furniture
Mengingat produk yang akan dihasilkan adalah meja dan kursi, maka dalam rangka memaksimumkan profit, perusahaan harus memutuskan berapa jumlah meja dan kursi yang sebaiknya diproduksi. Dengan demikian dalam kasus ini, yang merupakan variabel keputusan adalah meja (X1) dan kursi (X2).
Setelah kita mendefinisikan variabel keputusan, maka langkah selanjutnya adalah menuliskan secara matematis fungsi tujuan dan fungsi kendala.
1. Fungsi Tujuan
Tujuan perusahaan adalah maksimisasi keuntungan, sehingga kita dapat menuliskan fungsi tujuan sebagai berikut :
2. Fungsi kendala
Berkaitan dengan sumber daya yang digunakan, perusahaan tidak bisa memperkirakan secara tepat kebutuhan sumber daya yang digunakan untuk mencapai keuntungan tertentu. Biasanya perusahaan menyediakan sumber daya tertentu yang merupakan kebutuhan minimum atau maksimum. Kondisi seperti ini secara matematis diungkapkan dengan pertidaksamaan.
Kendala yang pertama adalah waktu yang tersedia di departemen pembuatan. Total waktu yang diperlukan untuk pembuatan X1 (meja) dimana untuk membuat satu unit meja diperlukan waktu 4 jam kerja dan untuk pembuatan X2 (kursi) dimana untuk membuat satu unit kursi diperlukan waktu 3 jam kerja adalah 240 jam. Kalimat ini bisa dirumuskan dalam pertidaksamaan matematis menjadi :
4 X1 + 3 X2 ≤ 240
Seperti halnya pada kendala yang pertama, maka pada kendala kedua dapat diketahui bahwa total waktu yang diperlukan untuk pengecatan X1 (meja) dimana untuk mengecat satu unit meja diperlukan waktu 2 jam kerja dan untuk pembuatan X2 (kursi) dimana untuk mengecat satu unit kursi dibutuhkan waktu 1 jam kerja adalah 100 jam. Kalimat ini bisa dirumuskan dalam pertidaksamaan matematis menjadi :
2X1 + 1 X2 ≤ 100
Salah satu syarat yang harus dipenuhi dalam Linear Programming adalah asumsi nilai X1 dan X2 tidak negatif. Artinya bahwa
- X1 ≥ 0 (jumlah meja yang diproduksi adalah lebih besar atau sama dengan nol)
- X2 ≥ 0 (jumlah kursi yang diproduksi adalah lebih besar atau sama dengan nol)
Dari uraian di atas dapat dirumuskan formulasi permasalahan secara lengkap sebagai berikut :
Fungsi tujuan :
Maksimisasi Z = $7X1 + $5X2
Fungsi kendala :
- 4 X1 + 3 X2 ≤ 240 (kendala departemen pembuatan)
- 2X1 + 1 X2 ≤ 100 (kendala departemen pengecatan)
- X1 ≥ 0 (kendala non negatif pertama)
- X2 ≥ 0 (kendala non negatif kedua)
Post a Comment